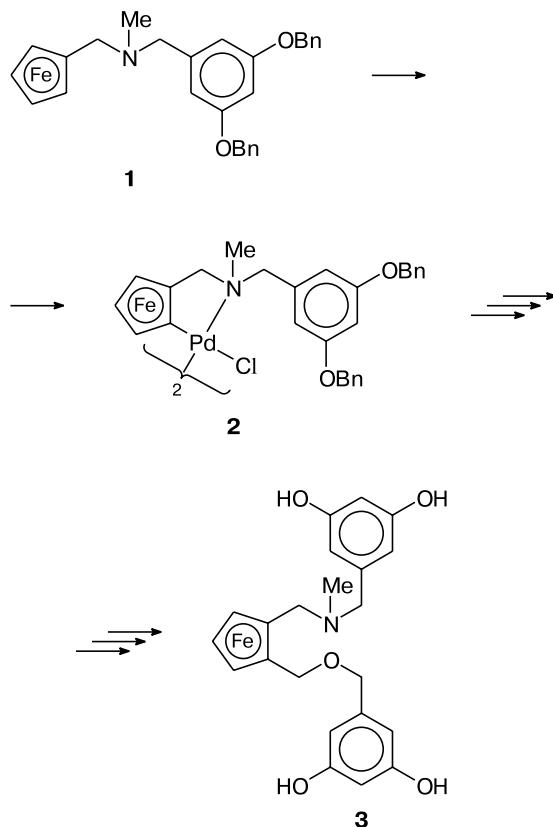


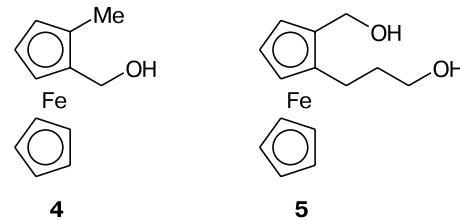
Synthesis of planar chiral ferrocene alcohols as potential dendrimer cores

N. S. Khrushcheva* and V. I. Sokolov


A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences,
28 ul. Vavilova, 119991 Moscow, Russian Federation.
Fax: +7 (495) 135 5085. E-mail: stemos@ineos.ac.ru

Planar chiral compounds, 1-hydroxymethyl-2-methylferrocene and new 3-(2-hydroxymethylferrocenyl)propanol, were synthesized to be used as dendrimer cores. The ethers of these compounds, namely, 1-(benzyloxymethyl)-2-methylferrocene and 2-(benzyloxymethyl)-1-(benzyloxypropyl)ferrocene, can be regarded as zero-generation Freche type dendrimers.

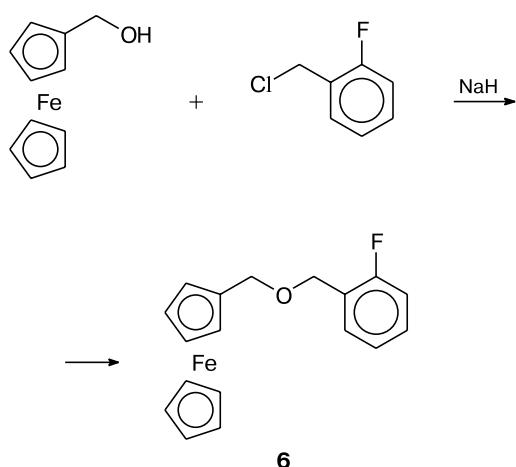
Key words: ferrocenes, planar chirality, Freche type dendrimers, palladacycles.


In the previous study,¹ we described the synthesis of ferrocenic amine **1** (Scheme 1), which was meant for the preparation of the optically active core of dendrimer **3** containing a planar chiral 1,2-disubstituted ferrocene.

Scheme 1

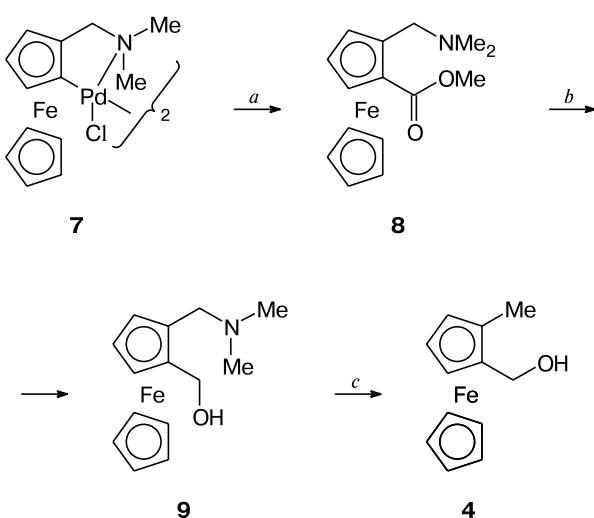
The cyclopalladation of amine **1**, which already contains a Freche dendrone fragment, was planned as the key stage of this synthesis. However, we could not obtain the desired cyclopalladation product **2** in a sufficiently pure state. The reaction gave mixtures containing apparently both cyclopalladation products of the ferrocene and aryl rings and L_2PdCl_4 type complexes, and further work along this line was considered inappropriate.

In this work we propose a different route to dendrimers based on 1,2-disubstituted planar chiral ferrocenes with one (**4**) or two (**5**) hydroxy groups, which can be converted into ethers.



The reactions of these compounds with the bromides of Freche dendrines of different generations² in the presence of sodium hydride should result in dendrimers with one or two branches and with a planar-chiral ferrocene as the core. To evaluate this possibility and to determine the stability of the resulting ethers, we carried out the model reaction between ferrocenylmethanol and 2-fluorobenzyl chloride (Scheme 2).

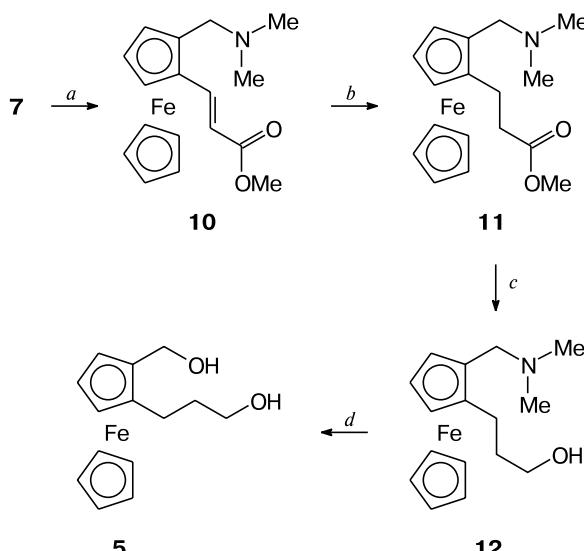
Ether **6** was formed in a high yield (82%) and was fairly stable. A 3 : 1 THF–DMF mixture proved to be the solvent of choice.


The favorable outcome of the test reaction allowed us to proceed to the synthesis of target compounds **4** and **5**. The palladium dimer **7**, whose synthesis is well developed

Scheme 2

for both racemic and scalemic forms,³ served as the key compound in the synthesis. Alcohol **4** has been known previously;⁴ however, in this study we prepared it by a different method (Scheme 3).

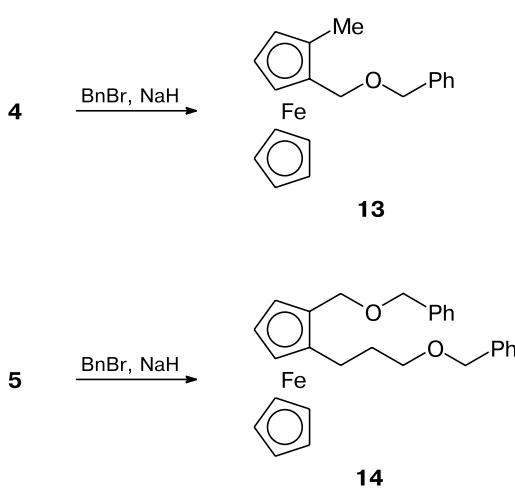
Scheme 3


Reagents and conditions: *a.* CO, MeOH, C₆H₆; *b.* LiAlH₄, THF; *c.* 1) MeI, 2) NaBH₄, MeCN, 80 °C.

It should be emphasized that, according to our synthetic route, compound **4** is formed upon the transformation of the dimethylaminomethyl group into methyl, while in the method developed previously,⁴ palladium was replaced by a methyl group. Thus, when working with optically active material, both enantiomers **4** and then two enantiomeric series of dendrimers can be obtained from the same precursor **7**.

Unlike alcohol **4**, diol **5** has not been prepared previously. We synthesized it from the same dimer **7**. The

reaction of **7** with methyl acrylate followed by the reduction of, first, the double bond and, second, the ester group gave amino alcohol **12** and, after hydrolysis of the intermediate ammonium salt, diol **5** (Scheme 4).


Scheme 4

Reagents: *a.* $\text{CH}_2=\text{CHCOOMe}$, Et_3N , $\text{C}_6\text{H}_5\text{Me}$; *b.* H_2 , 5% Pd/C , MeOH ; *c.* LiAlH_4 , THF ; *d.* 1) MeI , 2) NaOH , H_2O_2 .

The double bond in compound **10** was reduced in two ways: by catalytic hydrogenation at room temperature at a moderate hydrogen pressure and by catalytic reduction with heating using ammonium formate as the source of hydrogen.⁵ Both methods furnish the desired product **11** in a high yield; however, the possibility of addition of two H atoms in the autoclave-free version seems fairly attractive.

Scheme 5

In this work both planar-chiral alcohols **4** and **5** were obtained as racemates. In attempted synthesis of dendrimers based on them, they were made to react with benzyl bromide in the presence of NaH (Scheme 5). This gave ethers **13** and **14**, which are zero-generation dendrimers. This result suggests that higher-generation dendrimers, including optically active ones, could be prepared in the future based on ferrocene alcohols **4** and **5**.

Experimental

¹H NMR spectra were recorded on a Bruker AMX-400-ST instrument.

Dimer **7**³ and ferrocenylmethanol⁶ were synthesized by known procedures. The solvents were preliminarily dehydrated by standard procedures.

(2-Fluorobenzoyloxy)methylferrocene (6). Sodium hydride (0.18 g, 4.5 mmol) as a 60% dispersion in mineral oil was added to a solution of ferrocenylmethanol (0.70 g, 3.2 mmol) and 2-fluorobenzyl chloride (0.54 mL, 4.5 mmol) in THF (30 mL) and DMF (5 mL). The mixture was stirred for ~24 h, carefully diluted with water, extracted with ether, dried with Na₂SO₄, concentrated, and chromatographed on SiO₂ (hexane : AcOEt = (100 : 0)–(90 : 10)) to give 0.85 g (82%) of ether **6**, yellow oil. Found (%): C, 66.69; H, 5.29. C₁₈H₁₇FFeO. Calculated (%): C, 66.95; H, 5.21. ¹H NMR (CDCl₃), δ: 4.19 (s, 5 H, C₅H₅); 4.21, 4.31 (both m, 2 H each, C₅H₄); 4.34, 4.58 (both s, 2 H each, 2 CH₂); 7.04, 7.12, 7.27, 7.42 (all m, 1 H each, C₆H₄).

2-Methylferrocenylmethanol (4) (see Ref. 4). Carbon monoxide was passed for 3 h through a stirred solution of palladium dimer **7** (3.44 g, 9 mmol) in a benzene–MeOH mixture (4 : 1) (60 mL), and the mixture was filtered and concentrated. The residue was dissolved in AcOEt, washed with water and a NaHCO₃ solution, dried with Na₂SO₄, and concentrated to give ester **8** (2.16 g, 7.2 mmol, 80%) as an orange oil. The product was dissolved in THF (30 mL) and added dropwise to a suspension of LiAlH₄ (0.22 g, 5.8 mmol) in THF (30 mL) stirred at 0 °C. The cooling was removed, the mixture was stirred at room temperature for 4 h and cooled with ice. Water (20 mL) and then 15 N aqueous NaOH (20 mL) were added, the organic layer was separated, the aqueous layer was extracted with ether, and the combined organic fractions were washed with water, dried with Na₂SO₄, and concentrated to give amino alcohol **9** (1.8 g, 6.8 mmol, 92%) as a yellow oil. At 0 °C, MeI (1 mL) was added dropwise to its solution in acetone (5 mL), the mixture was stirred for 30 min, ether (50 mL) was added, and the precipitate was filtered off, washed with ether, dried, and dissolved in MeCN (30 mL). Sodium tetrafluoroborate (1 g, 13.5 mmol) was added, the mixture was refluxed for 4 h, diluted with water, and extracted with ether, and the extract was washed with water, dried with Na₂SO₄, and concentrated. The residue was chromatographed on SiO₂ (hexane : AcOEt = 100 : 1–50 : 50–0 : 100) to give compound **4** (1 g, 66%) as a yellow powder, m.p. 44–46 °C. Found (%): C, 63.11; H, 6.42; Fe, 23.92. C₁₂H₁₄FeO. Calculated (%): C, 62.64; H, 6.13; Fe, 24.27. ¹H NMR (CDCl₃), δ: 1.62 (br.s, 1 H, OH); 2.07 (s, 3 H, CH₃); 4.09 (m, 1 H, C₅H₃); 4.14 (s, 5 H, C₅H₅); 4.19, 4.21 (both m, 1 H each, C₅H₃); 4.44 (dd, 2 H, CH₂, J₁ = 1.18 Hz, J₂ = 2.60 Hz).

Methyl 3-(2-dimethylaminomethylferrocenyl)acrylate (10). A solution of palladium dimer **7** (10 g, 26 mmol), methyl acry-

late (2.8 mL, 31 mmol), and triethylamine (5.4 mL, 39 mmol) in toluene (100 mL) was refluxed for 6 h and filtered. The filtrate was washed with water and a solution of NaHCO₃, dried with Na₂SO₄, concentrated, chromatographed on SiO₂ (hexane : AcOEt = (100 : 0)–(50 : 50), then hexane : triethylamine = (80 : 20)–(50 : 50)), and concentrated to give 5 g (59%) of ester **10** as a dark-cherry oil. Found (%): C, 62.84; H, 6.22; Fe, 16.63. C₁₇H₂₁FeNO₂. Calculated (%): C, 62.40; H, 6.47; Fe, 17.07. ¹H NMR (CDCl₃), δ: 2.16 (s, 6 H, NMe₂); 3.26, 3.52 (dd, 1 H each, CH₂N, J₁ = 1.29 Hz, J₂ = 7.56 Hz); 3.76 (s, 3 H, Me); 4.08 (s, 5 H, C₅H₅); 4.38, 4.42, 4.55 (all m, 1 H each, C₅H₃); 6.10 and 7.69 (both d, 1 H each, =CH, J = 15.6 Hz).

Methyl 3-(2-dimethylaminomethylferrocenyl)propionate (11).

A. A mixture of ester **10** (5 g, 15.3 mmol) and 5% Pd/C (1 g) in MeOH (50 mL) was hydrogenated in an autoclave for 6 h (10 atm, 20 °C), filtered, concentrated, and chromatographed on SiO₂ (toluene : AcOEt = (100 : 0)–(50 : 50), then toluene : triethylamine = (100 : 0)–(80 : 20)) to give compound **11** (4.7 g, 93%) as an orange oil.

B. To a solution of ester **10** (2.11 g, 6.5 mmol) and ammonium formate (1.6 g, 25.4 mmol) in MeOH (50 mL), was added 5% Pd/C (0.4 g). The mixture was refluxed with stirring for 6 h, filtered, concentrated, and chromatographed on SiO₂ (hexane : triethylamine = (100 : 0)–(80 : 20)) to give 1.6 g (75%) of compound **11**. Found (%): C, 62.50; H, 7.06; N, 4.21; Fe, 16.95. C₁₇H₂₃FeNO₂. Calculated (%): C, 62.02; H, 7.04; N, 4.25; Fe, 16.96. ¹H NMR (CDCl₃), δ: 2.14 (s, 6 H, NMe₂); 2.50–2.75 (m, 4 H, 2 CH₂); 3.10, 3.52 (dd, 1 H each, CH₂N, J₁ = 1.34 Hz, J₂ = 9.32 Hz); 3.69 (s, 3 H, Me); 4.02 (m, 7 H, C₅H₅ + C₅H₃); 4.13 (m, 1 H, C₅H₃).

3-(2-Dimethylaminomethylferrocenyl)propanol (12). A solution of ester **11** (4.7 g, 14.3 mmol) in THF (30 mL) was added dropwise with stirring at 0 °C to a suspension of LiAlH₄ (0.46 g, 12.2 mmol) in THF (30 mL), cooling was removed, and the mixture was stirred at room temperature for 4 h and cooled with ice. Water (25 mL) and 15 N aqueous NaOH (25 mL) were successively added dropwise, the organic layer was separated, the aqueous layer was extracted with ether, and the combined organic fractions were washed with water, dried with Na₂SO₄, and concentrated to give compound **12** (4.26 g, 90%) as a yellow oil. Found (%): C, 63.96; H, 7.64; N, 4.43; Fe, 18.59. C₁₆H₂₃FeNO. Calculated (%): C, 63.80; H, 7.70; N, 4.65; Fe, 18.54. ¹H NMR (CDCl₃), δ: 1.40 (m, 1 H, CH); 1.50–2.00 (m + br.s, 2 H, CH + OH); 2.19 (s, 6 H, NMe₂); 2.59 (m, 2 H, 2 CH); 2.73 (dd, 1 H, CH₂N, J₁ = 1.26 Hz, J₂ = 31.44 Hz); 3.05, 3.34 (both m, 1 H each, 2 CH); 3.78 (dd, 1 H, CH₂N, J₁ = 1.26 Hz, J₂ = 31.44 Hz); 4.00–4.10 (s + m, 8 H, C₅H₅ + C₅H₃).

3-(2-Hydroxymethylferrocenyl)propanol (5).

Methyl iodide (4 mL) was added dropwise with stirring at 0 °C to a solution of alcohol **12** (4.26 g, 14.1 mmol) in acetone (10 mL), the mixture was stirred for 30 min, ether (100 mL) was added, and the precipitate was filtered off, washed with ether, dried, and dissolved in 4% NaOH (50 mL). The solution was refluxed for 6 h, extracted with ether, dried with Na₂SO₄, concentrated, and chromatographed on SiO₂ (hexane : AcOEt = 100 : 1–50 : 50–0 : 100) to give compound **5** (2.7 g, 70%) as a yellow oil. Found (%): C, 62.53; H, 6.89; Fe, 19.07. C₁₄H₁₈FeO₂·0.2C₆H₁₄. Calculated (%): C, 62.66; H, 7.20; Fe, 19.17. ¹H NMR (CDCl₃), δ: 1.58 (m, 1 H, CH); 1.67–1.90, 2.33–2.90 (m + br.s, 2 H each, CH + OH); 3.38–3.62 (m, 2 H,

CH₂); 4.04–4.20 (s + m, 8 H, C₅H₅ + C₅H₃); 4.26, 4.50 (dd, 1 H each, FcCH₂O, J₁ = 1.20 Hz, J₂ = 7.32 Hz).

1-(Benzoyloxymethyl)-2-methylferrocene (13). Sodium hydride (0.1 g, 2.5 mmol) in mineral oil (60%) was added to a solution of alcohol **1** (0.23 g, 1 mmol) and benzyl bromide (0.17 g, 1 mmol) in anhydrous THF (6 mL) and anhydrous DMF (2 mL), the mixture was stirred for 24 h, more alcohol **1** (0.05 g) and NaH (0.03 g) were added, and the mixture was stirred for an additional 2 h, carefully diluted with water, and extracted with ether. The extract was dried with Na₂SO₄, concentrated, chromatographed on SiO₂ (hexane : AcOEt = (100 : 0)–(90 : 10)), and concentrated to give ether **13** (0.26 g, 81%) as a yellow oil. Found (%): C, 71.30; H, 6.23; Fe, 17.26. C₁₉H₂₀FeO. Calculated (%): C, 71.27; H, 6.30; Fe, 17.44. ¹H NMR (CDCl₃), δ: 2.01 (s, 3 H, CH₃); 4.02 (s + m, 6 H, C₅H₅ + C₅H₃); 4.11, 4.16 (both m, 1 H each, C₅H₃); 4.26 (dd, 1 H, CH₂, J₁ = 1.11 Hz, J₂ = 6.66 Hz); 4.47 (dd, 1 H, CH₂, J₁ = 1.17 Hz, J₂ = 2.11 Hz); 4.48 (dd, 1 H, CH₂, J₁ = 1.11 Hz, J₂ = 6.66 Hz); 4.54 (dd, 1 H, CH₂, J₁ = 1.17 Hz, J₂ = 2.11 Hz); 7.25–7.39 (m, 5 H, Ph).

2-(Benzoyloxymethyl)-1-(3-benzoyloxypropyl)ferrocene (14). Sodium hydride (0.20 g, 5 mmol) in mineral oil (60%) was added to a solution of diol **5** (0.27 g, 1 mmol) and benzyl bromide (0.34 g, 2 mmol) in THF (9 mL) and DMF (3 mL). The mixture was stirred for 24 h, more diol **5** (0.05 g) and NaH (0.05 g) were added, and the mixture was stirred for 2 h, carefully diluted with water, extracted with ether, dried with Na₂SO₄, concentrated, chromatographed on SiO₂ (hexane : AcOEt = (100 : 0)–(90 : 10)), and concentrated to give diether **14** (0.28 g, 62%) as a yellow oil. Found (%): C, 74.23; H, 6.54; Fe, 11.49. C₂₈H₃₀FeO₂. Calculated (%): C, 74.01; H, 6.65; Fe, 12.29.

¹H NMR (CDCl₃), δ: 1.73–1.98 (m, 2 H, CH₂); 2.46 (t, 2 H, CH₂, J = 0.78 Hz); 3.51 (t, 2 H, CH₂, J = 0.65 Hz); 4.05 (s + m, 6 H, C₅H₅ + C₅H₃); 4.12 (m, 1 H, C₅H₃); 4.17–4.27 (m, 2 H, C₅H₃ + FcCH₃); 4.43–4.60 (m, 5 H, 2 PhCH₂O + FcCH₃); 7.24–7.42 (m, 10 H, Ph).

The authors are grateful to the ChemBridge corporation for the support of this work.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 05-03-33031).

References

1. N. S. Khrushcheva and V. I. Sokolov, *Izv. Akad. Nauk. Ser. Khim.*, 2004, 794 [*Russ. Chem. Bull., Int. Ed.*, 2004, **53**, 830].
2. C. J. Hawker and J. M. J. Fréchet, *J. Am. Chem. Soc.*, 1990, **112**, 7638.
3. V. I. Sokolov, L. L. Troitskaya, and O. A. Reutov, *J. Organomet. Chem.*, 1979, **182**, 537.
4. V. I. Sokolov, L. L. Troitskaya, L. A. Bulygina, P. V. Petrovskii, *Metallorgan. Khim.*, 1989, **2**, 356 [*Organomet. Chem. USSR*, 1989, **2** (Engl. Transl.)].
5. S. Ram and R. E. Ehrenkaufer, *Synthesis*, 1988, 91.
6. C. R. Hauser and J. K. Lindsay, *J. Org. Chem.*, 1957, **22**, 906.

Received February 20, 2006;
in revised form April 26, 2006